

THEORY OF SCIENTIFIC RESEARCHES OF WHOLE WORLD

MAGNETIC PROPERTIES OF SEMICONDUCTORS

Mamadjonova Hulkarxon Abdullayevna

Turaqurgon district, Namangan province, School physics teacher No. 3

While semiconductors are widely studied for their electrical properties, their magnetic behavior has become an area of growing interest, especially in modern technologies like spintronics, magnetoresistive sensors, and memory storage devices. The magnetic properties of semiconductors are not as straightforward as those of metals or insulators, but they play a critical role in emerging fields of nanoelectronics.

In general, pure intrinsic semiconductors are diamagnetic—they weakly repel magnetic fields and do not retain magnetization. However, when semiconductors are doped with magnetic atoms, such as manganese or iron, they can exhibit paramagnetic or even ferromagnetic properties. This has led to the development of diluted magnetic semiconductors (DMS), which combine semiconductor functionality with magnetic ordering.

In DMS materials, the interaction between the spins of the magnetic dopants and the charge carriers (electrons or holes) leads to interesting magnetic phenomena. One example is carrier-induced ferromagnetism, where magnetization occurs only when free carriers are present. This property allows researchers to control the magnetic state of the material using an electric field or light — an essential principle in spintronic devices.

Magnetoresistance is another key effect. In some semiconductors, the resistance changes significantly when exposed to a magnetic field. This effect is utilized in magnetic sensors, hard drive read heads, and advanced memory devices.

Moreover, quantum effects become prominent in semiconductors at nanoscale dimensions. The combination of quantum confinement and spin interactions allows for precise control of magnetic states at the atomic level — a promising direction for quantum computing and information storage.

Research into the magnetic behavior of semiconductors is still developing, but the potential is immense. It bridges the gap between conventional electronics and magnetic systems, offering faster, more energy-efficient, and multifunctional devices for the future.

THEORY OF SCIENTIFIC RESEARCHES OF WHOLE WORLD

References:

- 1. M. Azizov. Physics of Semiconductors. Tashkent, "Uqi-uvchi" Publishing, 1974.
- 2. A.Teshaboev. Introduction to Semiconductor Physics (Crystals. Spectrum of Electron States. Statistics of Charge Carriers). Tashkent, TashSU Publishing, 1985.
- 3. A.Teshaboev. Introduction to Semiconductor Physics (Kinetic Phenomena in Semiconductors). Tashkent, TashSU Publishing, 1986.
 - 4. I. Anselm. Introduction to the Theory of Semiconductors. Nauka Publishing, 1978.

