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MUKAMMAL DIZ’YUNKTIV VA KON’YUNKTIV NORMAL SHAKL 

KO’RINISHIGA KELTIRISHNING JADVAL USULLARI 

 

O’ktamova Ferangiz Shuhratovna 

Buxoro pedagogika instituti 

“Matematika va informatika” yo’nalishi talabasi 

 

Annotatsiya: Bu maqolada mukammal diz’yunktiv va kon’yunktiv normal shakllar 

haqida tushuncha, ularni ishlash usullari ko’rsatilgan. MDNSH va MKNSH larning 

jadval usulida yechilish tartibi aytib o’tilgan. 

Kalit so’zlar: MDNSH, MKNSH, mulohaza, element, to’liq, to’g’ri, normal, formula. 

 

       Elementar diz‟yunkstiya (elementar kon‟yunkstiya) to’g’ri elementar 

diz’yunkstiya (elementar kon’yunkstiya) deb aytiladi, shunda va faqat shundagina, 

qachonki elementar diz‟yunkstiya (elementar kon‟yunkstiya) ifodasida har bir 

elementar mulohaza    bir marta qatnashgan bo‟lsa. 

Masalan:          elementar diz‟yunksiya va          elementar 

kon‟yunkstiyalar mos ravishda to’g’ri elementar diz’yunkstiyalar va elementar 

kon’yunkstiyalar deb aytiladi. 

       Elementar diz‟yunkstiya (elementar kon‟yunkstiya)          

mulohazalarga nisbatan to’liq elementar diz’yunkstiya (elementar kon’yunkstiya) 

deb aytiladi, qachonki ularning ifodasida         mulohazalarning har bittasi 

bir matragina qatnashgan bo‟lsa. 

       Diz‟yunktiv normal shakl (kon‟yunktiv normal shakl) MDNSh (MKNSh) deb 

aytiladi, agar DNSh (KNSh) ifodasida bir xil elementar kon‟yunkstiyalar  

(elementar diz‟yunkstiyalar) bo‟lmasa va hamma elementar kon‟yunkstiyalar 

(elementar diz‟yunkstiyalar) to‟g‟ri va to‟liq bo‟lsa. 

1-teorema. N ta elementar mulohazalarning aynan yolg„on formulasidan farqli har bir 

formulasini mukammal diz‟yunktiv normal shaklga keltirish mumkin. 

I usul:  Misol:             formulani MDNSH ko‟rinishiga keltiring 

Ø(X ÚZ)Ù(X ®Y) =ØX ÙØZ Ù(ØX ÚY) = (ØX ÙØZ ÙØX)Ú 

Ú(ØX ÙØZ ÙY) = (ØX Ù(Y ÚØY)ØZ)Ú(ØX ÙØZ ÙY) = 

(ØX ÙY ÙØZ)Ú(ØX ÙØY ÙØZ)Ú(ØX ÙØZ ÙY) 

 

Misol: :             formulani MKNSH ko‟rinishiga keltiring 

Ø(X ÚZ)Ù(X ®Y) =ØX ÙØZ Ù(ØX ÚY) = (ØX ÙØZ ÙØX)Ú 

Ú(ØX ÙØZ ÙY) = (ØX ÙØZ)Ú(ØX ÙØZ ÙY) = (ØX ÙØZ)Ù(1ÚY) = 

=ØX ÙØZ =ØX Ù(Y ÚØY) ÙØZ = (ØX ÙY ÙØZ)Ú(ØX ÙØY ÙØZ). 

 

II usul: Jadval orqali MDNSH va MKNSH ko‟rinishiga keltirish 
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(XÚ Y®Z)«ØX  formulani MDNSH ko‟rinishiga keltirish 

X Y Z X  

  

(X         (XÚ Y®Z)«ØX 

1 1 1 1 1 0 0 

1 1 0 1 0 0 1 

1 0 1 1 1 0 0 

1 0 0 1 0 0 1 

0 1 1 1 1 1 1 

0 1 0 1 0 1 0 

0 0 1 0 1 1 1 

0 0 0 0 1 1 1 

 

Endi, formulaning qiymati 1 ga teng bo‟ladigan satrdagi o‟zgaruvchilarning qiymatini 

tanlab olamiz: F(0,0,0)=F(0,0,1)=F(0,1,1)=F(1,0,0)=F(1,1,0)=1. Har biri uchun 

elementar kon‟yunksiya tuzamiz:          ,         ,  

       ,         va       . 

 Nihoyat, elementar kon‟yunksiyalarning diz‟yunksiyasini tuzib, quyidagi formulaga 

ega bo‟lamiz:          )          )  (        (          

         . 

 

Shu berilgan (XÚ Y®Z)«ØX formulani MKNSH ko‟rinishiga keltrisak 

X Y Z XÚ Y XÚ Y®Z ØX (XÚ Y®Z)«ØX 

1 1 1 1 1 0 0 

1 1 0 1 0 0 1 

1 0 1 1 1 0 0 

1 0 0 1 0 0 1 

0 1 1 1 1 1 1 

0 1 0 1 0 1 0 

0 0 1 0 1 1 1 

0 0 0 0 1 1 1 

 

Endi, formulaning qiymati 0 ga teng bo‟ladigan satrdagi o‟zgaruvchilarning qiymatini 

tanlab olamiz: F(0,1 ,0)=F(1,0,1)=F(1,1,1)=0. Har biri uchun elementar diz‟yunksiya 

tuzib olamiz: X     ,  X      va X    .  

Nihoyat, elementar diz‟yunksiyalarning kon‟yunksiyasini tuzib, quyidagi formulaga 

ega bo‟lamiz: (X     )    X     )   X    ) 
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