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Annotation. In the present note it is considered the Fredholm integral operator   

with, rank       in the Hilbert space   ,    -. Firstly, it is mentioned that the 

number 0 is an eigenvalue of the Fredholm integral operator              with 

infinite multiplicity. The Fredholm determinant corresponding to this operator is 

constructed and its point spectrum is described. 
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In mathematics, Fredholm operators are certain operators that arise in the Fredholm 

theory of integral equations. In the present note we consider the finite rank Fredholm 

integral operator and describe its spectrum. 

In the Hilbert space   ,    - we consider the operator of the form 

(   )( )    ( ) ∫   ( ) ( )  

 

  

 

for            Here the functions   ( ),           are real-valued continuous 

and linearly independent functions defined on ,    -   

 We note that the scalar product of the two elements   and   from   ,    - is 

defined by  

(   )  ∫  ( ) ( )̅̅ ̅̅ ̅̅

 

  

    

 Analogously, the norm of the element     ,    - is defined by 

‖ ‖  ( ∫   ( )    

 

  

)

 
 

 

 Using these formulas and corresponding definitions one can show that the operator 

  acting in the Hilbert space   ,    - as  

             

is linear, bounded and self-adjoint.  

 By the construction the equality 
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(  )( )  ∑  ( ) ∫   ( )

 

  

 ( )  

 

   

 

holds. 

 Recall that the number     is an eigenvalue of the operator   with infinite 

multiplicity; an infinite set of (orthogonal) eigenfunctions    (       ) characterized 

by  

  (     )  ∫   ( )  ( )  

 

  

                    

There are   non-zero eigenvalues            which are zeros of the function  

 ( )     .     (     )/
     

 

  

where 

     {
                  
                    

 

 Usually the function  ( ) is called a Fredholm determinant associated with the 

operator    

 For the discrete spectrum of the operator   we have the following equality  

     ( )  *       ( )   +  

 Also for the essential spectrum of   we have  

    ( )  * +  

 For the sake of convenience in our further research, we require the condition 

(     )                                                      ( )  

to be fulfilled. Then the function  ( ) can be rewritten as a product of the form  

 ( )  (  ‖  ‖
 )(  ‖  ‖

 )   (  ‖  ‖
 )  

Therefore 

     ( )  * ‖  ‖
  ‖  ‖

    ‖  ‖
 +  

 ( )     ( )  *  ‖  ‖
  ‖  ‖

    ‖  ‖
 +  

 Simple calculations show that 

 (  )     (  )  *  ‖  ‖
 +                

The main result of the present note is the following theorem. 

Theorem. If the condition (1) is fulfilled, then the equality 

 ( )   (  )   (  )     (  ) 

holds for the spectrum of    

 We notice that such type Fredholm integral operators can be considered as 

perturbation operator in the Friedrichs model [1-4]. 
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