COORDINATION POLYMER OF CU (II) WITH 5-SULFOSALYSILIC ACID AND MONOETHANOLAMINE: SYNTHESIS, STRUCTURE AND HIRSHFELD SURFACE ANALYSIS

Authors

  • A.S. Normamatov Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan, adhamjonnormamatov@gmail.com Author
  • A.B. Ibragimov Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan, adhamjonnormamatov@gmail.com Author
  • Haji Akber Aisa Xinjiang Technical Institute of Physics & Chemistry of Chinese Academy of Sciences Author
  • Zhao Jiangyu Xinjiang Technical Institute of Physics & Chemistry of Chinese Academy of Sciences Author

Abstract

A novel coordination polymer (CP) has been synthesized and characterized through a combination of techniques including elemental analysis, Fourier Transform Infrared (FT-IR) spectroscopy, X-ray crystallography, and Hirshfeld surface analysis. The compound, formulated as [Cu2(SSA)4]n(MEA)2(H2O)4, exhibits a distinctive "paddle-wheel" or "Chinese lantern" structural motif. In this structure, copper ions occupy the central axis, while sulphosalicylic acid (SSA) ligands bridge these metal centers, forming a polymeric chain. The SSA molecules coordinate to the copper ions in two distinct ways axial coordination: The oxygen atoms (O10) of the sulfo groups bind to the metal centers. Equatorial coordination: The carboxylate ends of the SSA molecules link neighboring paddle-wheel units, resulting in the formation of polymeric chains extending along the [100] direction. Intramolecular hydrogen bonding (O1-H...O5) is observed within the SSA molecules. A Hirshfeld surface analysis was conducted to gain insights into the intermolecular interactions within the crystal structure. The analysis reveals significant variations in the contributions of different elements to both the internal and external surfaces of the molecule: Hydrogen: Makes substantial contributions to both the internal (31%) and external (59.7%) surfaces. Oxygen: Plays a significant role in the internal surface (49%) but a lesser role in the external surface (29.5%). Carbon: Contributes moderately to the internal surface (15.9%) and minimally to the external surface (6.1%). Copper: Has a minor impact on both internal (4.1%) and external (4%) surfaces.These findings provide valuable information about the packing arrangement and intermolecular interactions within the crystal lattice of the coordination polymer.

References

1. Fatima, A., Arora, H., Bhattacharya, P., Siddiqui, N., Abualnaja, K. M., Garg, P., & Javed, S. (2023). DFT, molecular docking, molecular dynamics simulation, MMGBSA calculation and hirshfeld surface analysis of 5-sulfosalicylic acid. Journal of Molecular Structure, 1273, 134242.

2. Liu, S., Dong, Y., Xu, L., & Kong, J. (2014). Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation, 73, 67-78.

3. Xue, J., Li, Z., Hao, W., Wang, X., Fan, G., Yu, L., & Geng, G. (2022). Effects of Soil Covering on Growth and Physio-Biochemical Indices of Sugar Beet Seedlings Under Short-Term Low-Temperature Stress. Sugar Tech, 24(5), 1530-1539.

4. Ezhilmathi, K., Singh, V. P., Arora, A., & Sairam, R. K. (2007). Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of Gladiolus cut flowers. Plant Growth Regulation, 51, 99-108.

5. Liu, Q., Du, K., Liu, M., Lv, R., Sun, B., Cao, D., ... & Wang, Z. (2019). Sulfosalicylic acid/Fe 3+ based nanoscale coordination polymers for effective cancer therapy by the Fenton reaction: an inspiration for understanding the role of aspirin in the prevention of cancer. Biomaterials science, 7(12), 5482-5491.

6. Purohit, P., Rawat, H., Verma, N., Mishra, S., Nautiyal, A., Bhatt, S., ... & Gupta, A. K. (2023). Analytical approach to assess anti-nutritional factors of grains and oilseeds: a comprehensive review. Journal of Agriculture and Food Research, 100877.

7. Fan, S. R., & Zhu, L. G. (2007). Structural diversity and fluorescent properties of copper (II) complexes constructed by 5-sulfosalicylate and 2, 2′-bipyridine. Journal of molecular structure, 827(1-3), 188-194.

8. Rehman, S. U., Islam, N., Ahad, S., Fatima, S. Z., & Pandith, A. H. (2013). Preparation and characterization of 5-sulphosalicylic acid doped tetraethoxysilane composite ion-exchange material by sol–gel method. Journal of hazardous materials, 260, 313-322.

9. Gupta, S., Fernandes, R., Patel, R., Spreitzer, M., & Patel, N. (2023). A review of cobalt-based catalysts for sustainable energy and environmental applications. Applied Catalysis A: General, 661, 119254.

10. Wang, W. G., Zhang, J., Song, L. J., & Ju, Z. F. (2004). Ferromagnetic linear trinuclear copper (II) complex bridged by sulfosalicylate ligand. Inorganic Chemistry Communications, 7(7), 858-860.

11. Smith, G., Wermuth, U. D., Young, D. J., & White, J. M. (2007). Polymeric structures in the metal complexes of 5-sulfosalicylic acid: The rubidium (I), caesium (I) and lead (II) analogues. Polyhedron, 26(14), 3645-3652.

12. Ibragimov, A. B., Ashurov, J. M., Ibragimov, B. T., Eshimbetov, A. G., Аzimova, S. S., Tilyakov, Z. G., & Dusmatov, A. F. (2023). Synthesis, structure, Hirshfeld surface analysis of the new copper complex of 3, 5-dinitrobenzoic acid and docking study of its metal complexes bioactivity. Journal of Molecular Structure, 136105.

13. Groom, C. R., Bruno, I. J., Lightfoot, M. P., & Ward, S. C. (2016). The Cambridge structural database. Structural Science, 72(2), 171-179.

14. Ma, J. F., Yang, J., Li, L., Zheng, G. L., & Liu, J. F. (2003). The first ladder structure containing three different squares: the structure of barium 3-carboxy-4-hydroxybenzenesulfonate. Inorganic Chemistry Communications, 6(5), 581-583.

15. Ibragimov, A. B., Ashurov, J. M., Ibragimov, B. T., Eshimbetov, A. G., Аzimova, S. S., Tilyakov, Z. G., & Dusmatov, A. F. (2023). Synthesis, structure, Hirshfeld surface analysis of the new copper complex of 3, 5-dinitrobenzoic acid and docking study of its metal complexes bioactivity. Journal of Molecular Structure, 136105.

16. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., & Spackman, M. A. (2021). CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54(3), 1006-1011.

Downloads

Published

2025-01-06