
European science international conference:

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC

 SOLUTIONS

398

GRAF STRUKTURALARIDA DFS:

ALGORITMNING XUSUSIYATLARI VA AMALIYOTDAGI

QO‘LLANILISHI

Farmonov Sherzodbek Rahmonjonovich

Farg’ona davlat universiteti amaliy matematika va

informatika kafedrasi katta o’qituvchisi

farmonovsh@gmail.com

Qirg’izboyev Diyorbek Akmaljon o’g’li

Farg’ona davlat Universiteti

Kompyuter ilmlari va dasturlash texnologiyalari yo’nalishi

2-kurs talabasi

Diyorbekqirgizboyev91@gmail.com

Anotatsiya: DFS (Depth-First Search) algoritmi — grafni chuqurdan chuqurga

qidirish algoritmi bo'lib, grafdagi barcha tugunlarni (yoki uchrashgan tugunlarni)

qidirish uchun ishlatiladi. DFS algoritmi orqali biror tugundan boshlab, barcha qo'shni

tugunlarni kuzatib chiqamiz, har bir qo'shni tugunning ham qo'shni tugunlarini yana

chuqurroq qidiramiz. Bu jarayon tugunlar bo'ylab yuqoridan pastga qarab ketadi.

Kalit so’zlar: DFS (Depth-First Search) , graf, daraxt, rekursiya, stack, indeks,

Graph Traversal, Adjacency List, tugun, Chuqur qidirish, Visitation, Backtracking,

Iterativ DFS.

Annotation: The DFS (Depth-First Search) algorithm is a graph traversal algorithm

used to visit all vertices of a graph (or the encountered vertices). Using the DFS

algorithm, starting from one vertex, we explore all its neighbors, and then for each

neighbor, we explore their neighbors, going deeper each time. This process moves from

vertex to vertex, like "top-down."

Keywords: DFS (Depth-First Search), graph, tree, recursion, stack, index, graph

traversal, adjacency list, vertex, deep search, visitation, backtracking, Iterative DFS.

Аннотация: DFS (Depth-First Search) алгоритм — это алгоритм поиска в

графе, который используется для обхода всех вершин графа (или встреченных

вершин). С помощью алгоритма DFS начиная с одной вершины, мы исследуем всех

еѐ соседей, затем для каждого соседа ищем его соседей, углубляясь всѐ дальше.

Этот процесс идет от вершины к вершине, как бы "сверху вниз".

Ключевые слова: DFS (Поиск в глубину), граф, дерево, рекурсия, стек, индекс,

обход графа, список смежности, вершина, глубокий поиск, посещение, бэктрекинг,

Итеративный DFS.

mailto:farmonovsh@gmail.com

European science international conference:

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC

 SOLUTIONS

399

DFS (Depth-First Search) algoritmi — bu graf yoki daraxtlar kabi

ma'lumotlar tuzilmalarini qidirishda ishlatiladigan asosiy algoritmlardan biridir.

Algoritmning asosiysi, berilgan grafda birinchi navbatda chuqur qidiruvni amalga

oshirishdir. Bu algoritm bir nuqtadan boshlab graflarni yoki daraxtlarni o‗rganadi va har

bir yangi tugun yoki cho‗qqini chuqurlik bo‗yicha izlaydi, to‗xtamadan oxirigacha

boradi. DFS algoritmida graflar ko‗pincha tugunlar va ularni bog‗laydigan qirralar (yoki

oraliqlar) orqali ifodalanadi. DFS algoritmi grafning barcha tugunlarini to‗liq o‗rganishi

uchun har bir tugun faqat bir marta o‗rganiladi. Bu algoritmning boshqalaridan ajralib

turadigan xususiyati, u chuqurroq o‗rganishga intiluvchi yondashuvni qo‗llaydi va bu

jarayonni ko‗pincha rekursiya yordamida amalga oshiradi. Rekursiv yondashuvda har bir

yangi tugun uchun DFS yana yangi qidiruvni boshlaydi, bu esa chuqurlikda

to‗xtamaydigan izlanishga olib keladi. DFS algoritmi odatda graflarni yoki daraxtlarni

chuqur qidirishda ishlatiladi, bunda har bir node yoki tugun o‗zining barcha bolalari

orqali alohida o‗rganiladi. Bu algoritmning ishlash prinsipida o‗ziga xos xususiyatlar

mavjud: algoritm faqat kerakli tugunni topish uchun faqat bitta yo‗ldan harakat qiladi va

barcha noaniq qirralar o‗rganilib bo‗lgach, natija qaytariladi. DFS algoritmida har bir

tugunning holati ko‗pincha "qolgan", "o‗rganilgan" va "tugallanmagan" kabi holatlar

bilan belgilanadi, bu esa algoritmga tugunni qayta ishlashda yordam beradi. DFS

algoritmi aslida oddiy ko‗rinishda bo‗lsa-da, uning amaliy qo‗llanilishi juda kengdir,

chunki u har xil turdagi masalalarni hal qilishda juda samarali bo‗lishi mumkin, ayniqsa

graf strukturasi bilan ishlashda. DFS algoritmi grafik algoritmlar orasida eng

oddiylaridan biri hisoblanadi, ammo u juda samarali va muhim vositadir. DFSning

amaliy qo‗llanilishi juda keng, chunki uning yordamida ko‗plab turli xil muammolarni

hal qilish mumkin. Misol uchun, bu algoritm loyihalarni boshqarishda, tarmoqni tahlil

qilishda yoki hatto o‗yinlarda ishlatiladi. Masalan, labirintni o‗rganishda DFS yordamida

har bir yo‗lni chuqurroq tahlil qilib, topilgan yo‗lni qayta ishlash mumkin. DFSning

boshqa bir muhim qo‗llanilishi esa topologik saralashda bo‗ladi. Topologik saralash, bir-

biriga bog‗langan tugunlar (masalan, dasturiy ta‘minotdagi modullar yoki jarayonlar)

bo‗yicha o‗zaro bog‗lanishni tartibga solishda ishlatiladi. DFS algoritmi shu tarzda

barcha tugunlarni tartibga solishda ishlatiladi. Bu turdagi muammolarni hal qilishda

DFSning chuqurlik bo‗yicha yondashuvi juda samarali hisoblanadi.

DFS algoritmining ishlash prinsipi:

1. Boshlanish nuqtasi: Algoritm graflarni yoki daraxtlarni qidirishda, boshlang'ich

tugundan boshlanadi.

2. Chuqurdan-qidirish: Algoritm har bir tugunni tekshiradi, agar tugun yangi bo'lsa

(ya'ni, unga hali tashrif buyurilmagan bo'lsa), uning qo'shni tugunlarini ham tekshiradi.

Bunday tarzda, u tugunning barcha qo'shni tugunlariga chuqurroq kirib boradi.

DFS algoritmi odatda rekursiv tarzda amalga oshiriladi, lekin uni stack (stak)

yordamida ham iterativ ravishda amalga oshirish mumkin.

DFSning C# kodidagi misoli (rekursiv):

European science international conference:

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC

 SOLUTIONS

400

Biz quyidagi graf bo‘yicha ish yuritib ko‘ramiz.

Quyida DFS algoritmining rekursiv usulda ishlashini ko'rsatadigan misol keltirilgan.

Bu misolda, grafni ro'yxatlar (adjacency list) yordamida ifodalash va DFSni amalga

oshirish ko'rsatiladi.

C# dasturlash tilidagi kodi:

using System;

using System.Collections.Generic;

class Program

{

 static Dictionary<int, List<int>> graph = new Dictionary<int, List<int>>();

 static void DFS(int node, HashSet<int> visited)

 {

 if (visited.Contains(node))

 return;

 visited.Add(node);

 Console.WriteLine(node);

 foreach (var neighbor in graph[node])

 {

 DFS(neighbor, visited);

 }

 }

 static void Main()

 {

 graph[0] = new List<int> { 1, 2 };

 graph[1] = new List<int> { 0, 3, 4 };

 graph[2] = new List<int> { 0 };

 graph[3] = new List<int> { 1 };

 graph[4] = new List<int> { 1 };

 HashSet<int> visited = new HashSet<int>();

 Console.WriteLine("DFS natijasi:");

0

2 1

4 3

European science international conference:

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC

 SOLUTIONS

401

 DFS(0, visited);

 }

}

DFS algoritmining ishlash jarayoni:

1.Graf quyidagicha tuzilgan:

 1) 0 → 1, 2

 2) 1 → 0, 3, 4

 3) 2 → 0

 4) 3 → 1

 5) 4 → 1

2.DFS(0, visited) chaqirilganda, boshlang'ich tugun 0 bo'ladi. DFS algoritmi 0 ni

tashrif buyurib, uning qo'shni tugunlariga (1 va 2) o'tadi va ularni ham tekshiradi.

3.Algoritm, 0 ning qo'shnisi 1 ni tekshiradi, so'ngra 1 ning qo'shnilari 3 va 4 ni

tekshiradi. Keyin 0 ni tugatib, boshqa tugunlarga o'tadi.

DFS algoritmining boshqa implementatsiyasi (iterativ usul):

Agar rekursiyadan foydalanmaslik kerak bo'lsa, DFS algoritmini stack (stak)

yordamida iterativ tarzda ham amalga oshirish mumkin.

C# dasturlash tilidagi kodi:

using System;

using System.Collections.Generic;

class Program

{

 static Dictionary<int, List<int>> graph = new Dictionary<int, List<int>>();

 static void DFS(int start)

 {

 Stack<int> stack = new Stack<int>();

 HashSet<int> visited = new HashSet<int>();

 stack.Push(start);

 while (stack.Count > 0)

 {

 int node = stack.Pop();

 if (!visited.Contains(node))

 {

 visited.Add(node);

 Console.WriteLine(node);

 foreach (var neighbor in graph[node])

 {

European science international conference:

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC

 SOLUTIONS

402

 if (!visited.Contains(neighbor))

 {

 stack.Push(neighbor);

 }

 }

 }

 }

 }

 static void Main()

 {

 graph[0] = new List<int> { 1, 2 };

 graph[1] = new List<int> { 0, 3, 4 };

 graph[2] = new List<int> { 0 };

 graph[3] = new List<int> { 1 };

 graph[4] = new List<int> { 1 };

 Console.WriteLine("Iterativ DFS natijasi:");

 DFS(0);

 }

}

DFS algoritmining afzalliklari:

Chuqurdan qidirish: DFS graflar va daraxtlar bilan ishlashda qidiruvning chuqur

tomonini, ya'ni biror yo'nalishda qidirish imkonini beradi.

Xotira tejash: Agar graf keng bo'lsa, DFS rekursiv ravishda ko'plab tugunlarni ko'rib

chiqishi mumkin va xotira ishlatishda samarali bo'lishi mumkin.

DFSning kamchiliklari:

Chuqur grafda stack to'lishi mumkin: Agar graf juda chuqur bo'lsa, rekursiv

chaqiruvlar va stack'lar juda katta bo'lishi mumkin va bu "stack overflow" xatoligiga olib

kelishi mumkin.

Optimal yo'lni topmaslik: DFS ba'zan eng qisqa yo'lni topmasligi mumkin. Agar eng

qisqa yo'l kerak bo'lsa, BFS (Breadth-First Search) yaxshiroq variant bo'lishi mumkin.

DFS algoritmi grafni tahlil qilishda, masalan, grafning bog'liqligini tekshirish, tsiklni

aniqlash, topologik saralash kabi muammolarni hal qilishda keng qo'llaniladi. Rekursiv

usulda amalga oshirilganda, DFS algoritmi oddiy va tushunarli bo'lsa-da, chuqur graf

tuzilmalarida "stack overflow" xatoliklariga olib kelishi mumkin. Iterativ usulda esa stack

yordamida DFS ni amalga oshirish mumkin, bu esa xotira va rekursiv chaqiruvlar bilan

bog'liq muammolarni oldini oladi. DFS algoritmining asosiy afzalliklari orasida chuqur

qidirish va keng graf tuzilmalarida samaradorlikni ta'minlash, shuningdek, xotira tejash

bor.

European science international conference:

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC

 SOLUTIONS

403

FOYDALANILGAN ADABIYOTLAR:

1. ―INTRODUCTION TO ALGORITHMS‖ BY THOMAS H. CORMEN,

CHARLES E. LEISERSON, RONALD L. RIVEST, AND CLIFFORD STEIN

2. ―ALGORITHMS‖ BY ROBERT SEDGEWICK AND KEVIN WAYNE

3. ―THE ART OF COMPUTER PROGRAMMING‖ BY DONALD E. KNUTH

4. ―DATA STRUCTURES AND ALGORITHMS IN C++‖ BY ADAM DROZDEK

5. ―GRAPH THEORY AND COMPLEX NETWORKS‖ BY MAARTEN VAN

STEEN

6. ―ALGORITHM DESIGN MANUAL‖ BY STEVEN S. SKIENA

7. ―DATA STRUCTURES AND ALGORITHMS‖ BY MICHAEL T. GOODRICH,

ROBERTO TAMASSIA, AND MICHAEL H. GOLDWASSER

8. ―COMPETITIVE PROGRAMMING‖ BY STEVEN HALIM AND FELIX

HALIM

9. Farmonov, S., & Nazirov, A. (2023). C# DASTURLASH TILIDA GRAY KODI

BILAN ISHLASH. В CENTRAL ASIAN JOURNAL OF EDUCATION AND

INNOVATION (Т. 2, Выпуск 12, сс. 71–74). Zenodo.

10. Farmonov, S., & Toirov, S. (2023). NETDA DASTURLASHNING

ZAMONAVIY TEXNOLOGIYALARINI O'RGANISH. Theoretical aspects in the

formation of pedagogical sciences, 2(22), 90-96

11. Raxmonjonovich, F. S. (2023). Array ma‘lumotlar tizimini talabalarga o‘qitishda

Blockchain metodidan foydalanish. Yangi O'zbekiston taraqqiyotida tadqiqotlarni o'rni

va rivojlanish omillari, 2(2), 541-547.

12. Raxmonjonovich, F. S. (2023). Dasturlashda interfeyslardan foydalanishning

ahamiyati. Yangi O'zbekiston taraqqiyotida tadqiqotlarni o'rni va rivojlanish

omillari, 2(2), 425-429.

13. Raxmonjonovich, F. S. (2023). Dasturlashda obyektga yo‘naltirilgan

dasturlashning ahamiyati. Yangi O'zbekiston taraqqiyotida tadqiqotlarni o'rni va

rivojlanish omillari, 2(2), 434-438.

