

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC

SOLUTIONS

GREEN AND NATURE-BASED TECHNOLOGIES

Zakirova Sayyora Alimovna

PhD in Economics, Associate Professor,

Department of "International Economics"

University of World Economy and Diplomacy

Email: sayyora.6262@mail.ru

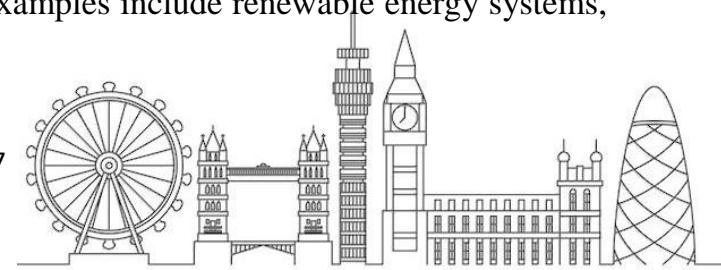
Phone: +998 90 327 77 55

Najimov Parvozbek Ta'lat O'gli

1st-year Student of "World Economy and Management"

University of World Economy and Diplomacy

Email: najimovparvoz@gmail.com


Phone: +998 95 265 28 82

Abstract: *The transition toward sustainable development increasingly depends on the adoption of green and nature-based technologies that harmonize industrial progress with ecological systems. These technologies—ranging from renewable energy and biomimetic engineering to ecosystem-based urban design—represent an innovative synthesis of science, technology, and nature. This article explores the concept, evolution, and applications of green and nature-based technologies across various sectors of the global economy. Using examples from Europe, Asia, and North America, the study demonstrates how environmentally adaptive innovations can reduce carbon emissions, restore biodiversity, and enhance resilience to climate change. The analysis emphasizes that the future of technological progress lies not in opposing nature, but in learning from it transforming natural principles into sustainable solutions for human development.*

Keywords: *green technology, nature-based solutions, biomimicry, sustainability, innovation, circular economy, ecological engineering, climate adaptation.*

In the twenty-first century, the evolution of technology is inseparable from the need to address environmental challenges. As societies face increasing climate risks, pollution, and resource scarcity, the search for sustainable technological pathways has intensified. Green and nature-based technologies have emerged as a new paradigm that redefines the relationship between humanity and the environment. Unlike traditional industrial models that exploit nature as a passive resource, these innovations treat natural systems as models, mentors, and measures for technological design. They aim to mimic the efficiency, resilience, and circularity found in ecosystems, integrating biological and engineering principles to create a more sustainable civilization.

Green technologies encompass a wide range of innovations that minimize environmental impact by improving energy efficiency, reducing emissions, and promoting the sustainable use of resources. Examples include renewable energy systems,

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC SOLUTIONS

electric mobility, circular waste management, and eco-friendly materials. Nature-based technologies, or biomimetic technologies, go further they emulate natural processes and structures to solve human problems. From the design of self-cleaning materials inspired by lotus leaves to cooling systems modeled after termite mounds, these technologies combine ecological wisdom with modern science. The development of green and nature-based technologies reflects a growing recognition that the solutions to environmental problems are often embedded within nature itself. The concept of biomimicry, popularized by scientist Janine Benyus in the 1990s, has inspired numerous innovations in architecture, engineering, and materials science. Meanwhile, the framework of nature-based solutions promoted by the United Nations and the European Union emphasizes the restoration of natural ecosystems such as wetlands, forests, and mangroves as effective tools for climate adaptation and mitigation. These complementary approaches represent the intersection of ecological science, design, and technology.

Table 1. Global Examples of Green and Nature-Based Technologies (2024)

Country	Example	Environmental Benefit
Germany	Biomimetic materials inspired by spider silk	Reduces energy and material use
Italy	Milan “Vertical Forests”	Improves air quality, supports biodiversity
Singapore	Green roofs and living walls	Lowers urban heat, manages stormwater
China	Artificial wetlands	Cleans wastewater, restores ecosystems
Sweden	Eco-industrial parks	Cuts CO ₂ emissions and waste by 30%

Source: UNEP, IEA, Biomimicry Institute, 2024.

The table illustrates that green and nature-based technologies are being implemented across diverse geographical and economic contexts. In Europe, the integration of natural systems into urban planning has become a hallmark of sustainable design. The “Vertical Forests” in Milan, designed by architect Stefano Boeri, host more than 20,000 plants and trees, absorbing CO₂ while providing natural insulation and aesthetic value. Similarly, the Netherlands’ “Room for the River” program demonstrates how nature-based flood management can protect human settlements while enhancing ecological functions. These projects embody the idea that natural processes, when properly understood, can deliver more efficient and resilient infrastructure than purely artificial systems. In Asia, countries like China, Japan, and Singapore have become leaders in ecological engineering and biomimetic innovation. China’s extensive use of constructed wetlands for wastewater treatment represents a large-scale application of natural purification mechanisms. These systems imitate the function of marshes by using plants and microorganisms to remove

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC SOLUTIONS

pollutants, offering a cost-effective and low-energy alternative to traditional treatment plants. Singapore's "City in a Garden" initiative integrates greenery into nearly every layer of urban infrastructure, demonstrating that high-density cities can coexist with nature. Japan, known for its technological sophistication, applies biomimicry in robotics and material science, developing devices that replicate natural movement and energy efficiency. In North America, green technologies are closely linked to renewable energy expansion and clean innovation. The United States has emerged as a global leader in green energy patents, particularly in solar cells, wind turbines, and green hydrogen. The emphasis on digitalization and artificial intelligence in energy management allows for greater optimization and predictive maintenance of renewable infrastructure. Canada, meanwhile, focuses on nature-based climate adaptation, restoring forests and wetlands as natural carbon sinks. These strategies not only mitigate environmental damage but also stimulate economic development and job creation in emerging green sectors. The growth of green and nature-based technologies is supported by a strong policy foundation. The European Green Deal, the UN Decade on Ecosystem Restoration (2021–2030), and the Paris Agreement all highlight innovation and nature-based solutions as key pathways to achieve global sustainability goals. Governments increasingly integrate ecosystem services into urban and industrial planning, supported by incentives, carbon pricing, and green finance mechanisms. The European Union, for instance, funds large-scale "Horizon Europe" projects on biomimicry and circular economy, while the World Bank supports developing countries in implementing ecosystem-based adaptation measures.

Economically, green and nature-based technologies contribute to a new model of growth one that decouples prosperity from environmental degradation. According to the International Renewable Energy Agency (IRENA), the global green economy could generate over 42 million jobs by 2030, with nature-based solutions contributing nearly 10% of this total. The economic rationale is clear: restoring nature and using its principles is not only ethical but profitable. Sectors such as biomaterials, green chemistry, ecological construction, and renewable energy attract growing investment from both public and private institutions.

From a scientific perspective, these technologies signify a paradigm shift in innovation. Traditional engineering often seeks to dominate or replace natural systems; in contrast, nature-based design learns from evolutionary processes refined over billions of years. For example, wind turbine blades modeled after whale fins achieve greater efficiency due to their aerodynamic structure; desert beetle shells inspire water-harvesting surfaces in arid regions; and coral-inspired concrete promotes marine biodiversity in artificial reefs. Such designs highlight how cooperation with nature leads to smarter and more efficient technologies.

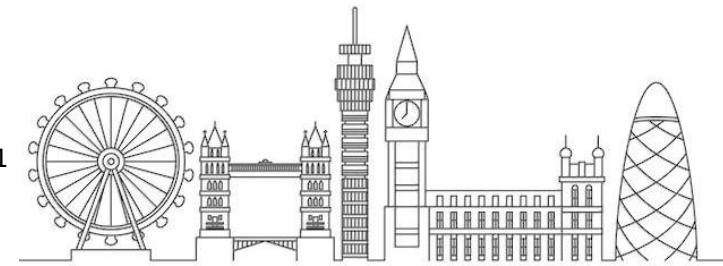
However, challenges persist in scaling up these innovations. Many nature-based projects remain localized or experimental due to high initial costs, lack of technical expertise, or limited regulatory frameworks. Furthermore, measuring their long-term

MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC SOLUTIONS

effectiveness in comparison to conventional technologies requires more data and standardized evaluation methods. Bridging these gaps demands stronger collaboration between scientists, engineers, and policymakers. Education and public awareness also play a vital role in fostering acceptance and understanding of nature-inspired innovation. The digital revolution further amplifies the potential of green and nature-based technologies. Artificial intelligence, big data, and Internet of Things (IoT) systems enable real-time monitoring of environmental performance, optimizing the management of green infrastructure and ecosystems. Smart cities increasingly combine digital tools with ecological principles, creating interconnected systems where data and nature work together to enhance sustainability. For instance, AI-driven irrigation systems adjust water use based on weather and soil conditions, and drone-based reforestation programs accelerate the restoration of degraded landscapes.

The philosophical dimension of this transformation lies in redefining humanity's relationship with the planet. Green and nature-based technologies symbolize a return to ecological harmony, where innovation serves as a bridge between culture and nature rather than a barrier. They embody a new form of progress that values complexity, adaptation, and regeneration over linear extraction and consumption. This shift is not only technological but cultural an evolution in human consciousness toward recognizing the Earth as an intelligent and living system.

Conclusion. Green and nature-based technologies represent the frontier of sustainable innovation. By integrating ecological principles into technological systems, they redefine the meaning of progress and offer practical solutions to global environmental crises. Their successful implementation in countries worldwide demonstrates that harmony between nature and technology is achievable and beneficial for both society and the planet. However, scaling these solutions requires interdisciplinary collaboration, policy support, and a shift in societal values toward ecological intelligence. The future of sustainable development will depend on our ability to learn from nature not as an object to exploit, but as a partner in creation.


REFERENCES

1. United Nations Environment Programme (UNEP). *Nature-Based Solutions for Climate and Biodiversity 2024*. Nairobi, 2024.
2. European Commission. *Green Deal Research and Innovation Projects: Horizon Europe 2023*. Brussels, 2023.
3. Biomimicry Institute. *Annual Report on Bio-Inspired Design 2023*. Montana, 2023.
4. International Renewable Energy Agency (IRENA). *Global Green Economy Outlook 2024*. Abu Dhabi, 2024.

**MODERN PROBLEMS IN EDUCATION AND THEIR SCIENTIFIC
SOLUTIONS**

5. World Bank. Ecosystem-Based Adaptation and Resilience Report 2023. Washington, D.C., 2023.
6. International Energy Agency (IEA). Clean Energy Technology Guide 2024. Paris, 2024.
7. United Nations. Decade on Ecosystem Restoration Progress Report 2024. New York, 2024.
8. OECD. Innovation for Green Growth: Policy Framework 2023. Paris, 2023.
9. World Economic Forum. Circular Economy and Biomimicry 2024. Geneva, 2024.
10. IPBES. Biodiversity and Nature-Based Innovation Assessment 2024. Bonn, 2024.

