SYNTHESIS OF NEW PRODUCTS OF SOME PHYTOHARMONES AND THEIR INFLUENCE ON PLANT GROWTH DEVELOPMENT
Keywords:
Gibberellic acid, Brominated phytohormones, Infrared spectroscopy, C–Br bond identification, Functional group analysis, Spectral comparison, Structural modification, Plant growth regulators, FT-IR characterization, Organic halogenationAbstract
Gibberellic acid (GA), a pivotal plant hormone, influences key growth processes in plants, including seed germination and stem elongation. Bromination of GA is hypothesized to alter its structural and biological properties, potentially enhancing its agricultural efficacy. This study employs infrared (IR) spectroscopy to investigate structural changes in GA and its brominated derivative (GA–Br).
References
1. Smith, A. B., & Johnson, C. D. (2019). Infrared Spectroscopy of Plant Hormones: An Overview. Journal of Agricultural Chemistry, 45(3), 120-130.
2. Brown, E., et al. (2020). Halogenation of Gibberellic Acid and Its Impact on Biological Activity. Plant Growth Regulation, 48(2), 89-97.
3. PerkinElmer. (2021). FTIR Spectroscopy: A Practical Guide. PerkinElmer Analytical Techniques Series, 12, 45-67.
4. Anderson JP. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance. Plant Cell Online. 16(12):3460–3479.
5. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones G, Parker JE. 2002. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science. 295:2077–2080.
6. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. 2002. The RAR1 interactor SGT1, an essential component of R gene triggered disease resistance. Science. 295:2073–2076.
7. Boatwright JL, Pajerowska-Mukhtar K. 2013. Salicylic acid: an old hormone up to new tricks. Mol Plant Pathol. 14(6):623–634.
8. Broekaert WF, Delauré S, De Bolle Miguel FC, Cammue Bruno PA. 2006. The role of ethylene in host-pathogen interactions. Annu Rev Phytopathology. 44:393–416.
9. Chanclud E, Kisiala A, Emery NR, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB. 2016. Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathogens. 12(2):e1005457.
10. Chanclud E, Morel JB. 2016. Plant hormones: a fungal point of view. Mol Plant Pathol. 17(8):1289–1297.
11. Chisholm ST, Coaker G, Day B, Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 124(4):803–814.
12. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 13(4):414–430.
13. Domingo C, Andrés F, Tharreau D, Iglesias DJ, Talon M. 2009. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Molecular Plant-Microbe Interactions. 22(2):201–210.
14. Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol. 49:373–385.
15. Hauser F, Li Z, Waadt R, Schroeder JI. 2017. SnapShot: abscisic acid signaling. Cell. 171(7):1708–1708 e1700.
16. Jiang CJ, Liu XL, Liu XQ, Zhang H, Yu YJ, Liang ZW. 2017. Stunted growth caused by blast disease in rice seedlings is associated with changes in phytohormone signaling pathways. Front Plant Sci. 8:1558.
17. Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H. 2013. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Molecular Plant-Microbe Interactions. 26(3):287–296.
18. Jones JD, Dangl JL. 2006. The plant immune system. Nature. 444(7117):323–329.
19. Kachroo A, Vincelli P, Kachroo P. 2017. Signaling mechanisms underlying resistance responses: what have we learned, and how is it being applied? Phytopathology. 107(12):1452–1461.
20. Kazan K, Lyons R. 2014. Intervention of phytohormone pathways by pathogen effectors. The Plant Cell. 26(6):2285–2309.
21. Kyndt T, Zemene HY, Haeck A, Singh R, De Vleesschauwer D, Denil S, De Meyer T, Hofte M, Demeestere K, Gheysen G. 2017. Below-ground attack by the root knot nematode Meloidogyne graminicola predisposes rice to blast disease. Molecular Plant-Microbe Interactions. 30(3):255–266.
22. Lopez MA, Bannenberg G, Castresana C. 2008. Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol. 11(4):420–427.
23. Miyamoto K, Enda I, Okada T, Sato Y, Watanabe K, Sakazawa T, Yumoto E, Shibata K, Asahina M, Iino M, et al. 2016. Jasmonoyl-l-isoleucine is required for the production of a flavonoid phytoalexin but not diterpenoid phytoalexins in ultraviolet-irradiated rice leaves. Biosci Biotechnol Biochem. 80(10):1934–1938.
24. Mukesh Jain NK, Tyagi AK. 2006. The auxin-responsive GH3 gene family in rice (Oryza stativa). Functional & Integerative Genomics.