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ABSTRACT: This thesis aims to investigate one-dimensional thermoelastic and 

thermoplastic problems by developing numerical models to analyze the effects of 

temperature and mechanical stress on material behavior. The study distinguishes 

between thermoelastic and thermoplastic theories, focusing on how materials behave 

under varying temperature conditions and mechanical loads. The numerical solutions are 

derived using finite difference methods (FDM) and finite element methods (FEM), 

providing insights into temperature distribution and deformation profiles over time. The 

results demonstrate that thermoelastic models exhibit only reversible deformations, while 

thermoplastic models show irreversible plastic deformations when stress exceeds a 

critical threshold. The developed models are applicable in engineering disciplines such 

as automotive, aerospace, and material science for evaluating the structural integrity of 

materials under high thermal and mechanical stresses. 
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INTRODUCTION: The behavior of materials under thermal and mechanical loads is 

of significant interest in engineering and scientific research. One-dimensional 

thermoelastic and thermoplastic problems serve as fundamental models for understanding 

the coupled interactions between heat conduction and material deformation. While 

thermoelasticity considers only elastic deformations, thermoplasticity also accounts for 

irreversible plastic deformations, which occur when the material stress surpasses the 

yield strength. This study aims to create numerical models for one-dimensional 

thermoelastic and thermoplastic problems to simulate and analyze material responses 

under varying conditions. 

2. Mathematical Formulation 

The mathematical models for thermoelastic and thermoplastic problems are based on 

the governing equations of heat conduction and stress-strain relations. The following 

sections outline the primary equations used in both models. 

2.1. Thermoelastic Problem 

The governing equations for the thermoelastic problem include the heat conduction 

equation and the stress-strain relation. The heat conduction equation is given by: 
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Where: 

 ρ is the density, 

 c is the specific heat capacity, 

 k is the thermal conductivity, 

 T is the temperature, 

 β  is the thermal expansion coefficient, and 

 σ  is the stress. 

The stress-strain relationship is expressed as: 

 
Where  

 E is Young`s module 

        is the total strain 

   is the mechanical strain,  and  

             is the thermal strain 

2.2. Thermoplastic Problem 

The thermoplastic model introduces plastic strain     in addition to the thermoelastic 

strain: 

               

The plastic deformation occurs when the stress exceeds the yield strength        :  

 

The governing heat conduction equation includes the heat generated by plastic work:  

 

 

Where    is the heat generated by 

plastic deformation. 

3. Numerical Solution 

Methods 

The numerical solution of these models is performed using finite difference methods 

(FDM) and finite element methods (FEM). The spatial and temporal discretization allows 

for solving coupled differential equations iteratively over small time steps. 

 Spatial Discretization: Divides the one-dimensional domain into discrete nodes. 

 Temporal Discretization: Utilizes a time-stepping scheme to update temperature 

and stress values at each node. 

3.1. Finite Difference Method (FDM) 

The heat conduction equation is discretized using central difference approximations, 

resulting in the following finite difference scheme: 



European science international conference: 

MODERN EDUCATIONAL SYSTEM AND INNOVATIVE TEACHING SOLUTIONS

22 
 

 
Where: 

   
 

  
 is the thermal diffusivity, 

    and    are the time and spatial step sizes, 

   
  denotes the temperature at position i and time step n. 

4. Numerical Implementation and Results 

A simplified numerical model was implemented using Python to simulate temperature 

and deformation profiles for both thermoelastic and thermoplastic cases. The results 

show that: 

 Thermoelastic Model: Temperature changes cause elastic deformations that are 

fully recoverable. No plastic deformation occurs, even at high temperatures. 

 Thermoplastic Model: When stress exceeds the yield limit, irreversible plastic 

strains develop, leading to permanent changes in material shape. The temperature 

distribution influences the stress-strain relationship significantly, highlighting the 

interdependency between thermal and mechanical effects. 

5. Conclusions 

The study successfully developed numerical models for one-dimensional thermoelastic 

and thermoplastic problems using finite difference methods. The results provide insights 

into material behavior under varying thermal and mechanical conditions: 

 Thermoelastic models are suitable for scenarios where deformations remain within 

the elastic range. 

 Thermoplastic models are necessary for understanding material behavior under 

high-stress conditions, where plastic deformations are inevitable. 

The developed numerical models can be used for practical engineering applications to 

predict material responses and optimize designs under complex thermal and mechanical 

loading conditions. 

6. Future Work 

Future research could extend the models to multi-dimensional cases and include more 

complex material properties such as viscoelasticity, damage mechanics, and dynamic 

loading conditions. Additionally, integrating machine learning algorithms for parameter 

optimization could further enhance model accuracy and computational efficiency. 
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