THE EXTENSIVE FORM OF A GAME

Authors

  • Mamatova Zilolaxon Xabibulloxonovna Associal Professor at Fergana State University, Doctor of Philosophy (PhD) in Pedagogical Sciences Author
  • Abdullajonov Xudoyor Xakimjonovich Student of Fergana State University Author

Keywords:

Game theory, strategic form, extensive form, game tree, information set, bluffing, signaling, decision-making

Abstract

This article explores the two fundamental models of game theory — the strategic form and the extensive form. While the strategic form provides a compact mathematical representation of a game, it fails to capture crucial aspects of real-world interactions such as bluffing, signaling, and sequential decision-making. The extensive form, on the other hand, illustrates the game through a game tree, incorporating chance moves, information sets, and the temporal structure of decisions, thus offering a richer and more realistic model of strategic behavior.

References

1. R. Bellman (1952) On games involving bluffing, Rendiconti del Circolo Math. di Palermo Ser. 2, Vol. 1 139-156.

2. R. Bellman and D. Blackwell (1949) Some two-person games involving bluffing, Proc. Nat. Acad. Sci. 35, 600-605. 8/04/49.

3. Bellman and Blackwell (1950) On games involving bluffing, RAND Memo P-168, 8/01/50.

4. John D. Beasley (1990) The Mathematics of Games, Oxford University Press.

5. Emile Borel (1938) Trait´ ´ e du Calcul des Probabilit´es et ses Applications Volume IV, Fascicule 2, Applications aux jeux des hazard, Gautier-Villars, Paris.

6. W. H. Cutler (1975) An optimal strategy for pot-limit poker, Amer. Math. Monthly 82, 368-376.

7. W. H. Cutler (1976) End-Game Poker, Preprint.

8. Melvin Dresher (1961) Games of Strategy: Theory and Applications, Prentice Hall, Inc. N.J.

9. R. J. Evans (1979) Silverman’s game on intervals, Amer. Math. Mo. 86, 277-281.

10. T. S. Ferguson (1967) Mathematical Statistics — A Decision-Theoretic Approach, Academic Press, New York.

11. J. Filar and K. Vrieze (1997) Competitive Markov Decision Processes, Springer-Verlag, New York.

12. L. Friedman (1971) Optimal bluffing strategies in poker, Man. Sci. 17, B764-B771.

13. S. Gal (1974) A discrete search game, SIAM J. Appl. Math. 27, 641-648.

14. D. B. Gillies, J. P. Mayberry and J. von Neumann (1953) Two variants of poker, Contrib. Theor. Games II, 13-50.

A. J. Goldman and J. J. Stone (1960b) A symmetric continuous poker model, J. Res. Nat. Bur. Standards 64B 35-40.

15.

Downloads

Published

2025-06-08