
European science international conference: 

 ANALYSIS OF MODERN SCIENCE AND INNOVATION 
 

 92 
 
 

THE EXTENSIVE FORM OF A GAME 

 

Mamatova Zilolaxon Xabibulloxonovna 

Associal Professor at Fergana State University, 

Doctor of Philosophy (PhD) in Pedagogical Sciences 

E-mail: mamatova.zilolakhon@gmail.com 

Abdullajonov Xudoyor Xakimjonovich 

Student of Fergana State University 

E-mail: xudoyorxan649@gmail.com 

 

Annotation: This article explores the two fundamental models of game theory — the 

strategic form and the extensive form. While the strategic form provides a compact 

mathematical representation of a game, it fails to capture crucial aspects of real -world 

interactions such as bluffing, signaling, and sequential decision -making. The extensive 

form, on the other hand, illustrates the game through a game tree, incorporating chance 

moves, information sets, and the temporal structure of decisions, thus offering a richer 

and more realistic model of strategic behavior. 
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The strategic form of a game is a compact way of describing the mathematical aspects 

of a game. In addition, it allows a straightforward method of analysis, at least in 

principle. However, the flavor of many games is lost in such a simple model. Another 

mathematical model of a game, called the extensive form, is built on the basic notions of 

position and move, concepts not apparent in the strategic form of a game. In the extensive 

form, we may speak of other characteristic notions of games such as bluffing, signaling, 

sandbagging, and so on. Three new concepts make their appearance in the extensive form 

of a game: the game tree, chance moves, and information sets. 

1 The Game Tree. The extensive form of a game is modelled using a directed graph. A 

directed graph is a pair (T, F) where T is a nonempty set of vertices and F is a function 

that gives for each x ∈ T a subset, F(x) of T called the followers of x. When a directed 

graph is used to represent a game, the vertices represent positions of the game. The 

followers, F(x), of a position, x, are those positions that can be reached from x in one 

move. 

A path from a vertex t0 to a vertex t1 is a sequence, ,  ,  . . . ,  
0 1 n

x x x , of vertices such 

that x0 = t0, xn = t1 and xi is a follower of  xi-1  for i = 1, . . . , n. For the extensive form of 

a game, we deal with a particular type of directed graph called a tree. 
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Definition. A tree is a directed graph, (T, F) in which there is a special vertex, t0, 

called the root or the initial vertex, such that for every other vertex t ∈ T, there is a unique 

path beginning at t0 and ending at t. 

The existence and uniqueness of the path implies that a tree is connected, has a unique 

initial vertex, and has no circuits or loops. 

In the extensive form of a game, play starts at the initial vertex and continues along 

one of the paths eventually ending in one of the terminal vertices. At terminal vertices, 

the rules of the game specify the payoff. For n-person games, this would be an n-tuple of 

payoffs. Since we are dealing with two-person zero-sum games, we may take this payoff 

to be the amount Player I wins from Player II. For the nonterminal vertices there are three 

possibilities. Some nonterminal vertices are assigned to Player I who is to choose the 

move at that position. Others are assigned to Player II. However, some vertices may be 

singled out as positions from which a chance move is made. 

Chance Moves. Many games involve chance moves. Examples include the rolling of 

dice in board games like monopoly or backgammon or gambling games such as craps, the 

dealing of cards as in bridge or poker, the spinning of the wheel of fortune, or the 

drawing of balls out of a cage in lotto. In these games, chance moves play an important 

role. Even in chess, there is generally a chance move to determine which player gets the 

white pieces (and therefore the first move which is presumed to be an advantage). It is 

assumed that the players are aware of the probabilities of the various outcomes resulting  

from a chance move. 

Information. Another important aspect we must consider in studying the extensive 

form of games is the amount of information available to the players about past moves of 

the game. In poker for example, the first move is the chance move of shuffling and 

dealing the cards, each player is aware of certain aspects of the outcome of this move (the 

cards he received) but he is not informed of the complete outcome (the cards received by 

the other players). This leads to the possibility of “bluffing.” 

2 Basic Endgame in Poker. One of the simplest and most useful mathematical models 

of a situation that occurs in poker is called the “classical betting situation” by Friedman 

(1971) and “basic endgame” by Cutler (1976). These papers provide expl icit situations in 

the game of stud poker and of lowball stud for which the model gives a very accurate 

description. This model is also found in the exercises of the book of Ferguson (1967). 

Since this is a model of a situation that occasionally arises in the last round of betting 

when there are two players left, we adopt the terminology of Cutler and call it Basic 

Endgame in poker. This will also emphasize what we feel is an important feature of the 

game of poker, that like chess, go, backgammon and other games, there is a distinctive 

phase of the game that occurs at the close, where special strategies and tactics that are 

analytically tractable become important. 
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Basic Endgame is played as follows. Both players put 1 dollar, called the ante, in the 

center of the table. The money in the center of the table, so far two dollars, is called the 

pot. Then Player I is dealt a card from a deck. It is a winning card with probability 1 /4 

and a losing card with probability 3/4. Player I sees this card but keeps it hidden from 

Player II. (Player II does not get a card.) Player I then checks or bets. If he checks, then 

his card is inspected; if he has a winning card he wins the pot and hence wins the 1 dollar 

ante from II, and otherwise he loses the 1 dollar ante to II. If I bets, he puts 2 dollars more 

into the pot. Then Player II – not knowing what card Player I has – must fold or call. If 

she folds, she loses the 1 dollar ante to I no matter what card I has. If II calls, she adds 2 

dollars to the pot. Then Player I’s card is exposed and I wins 3 dollars (the ante plus the 

bet) from II if he has a winning card, and loses 3 dollars to II otherwise. 

Let us draw the tree for this game. There are at most three moves in this game: (1) the 

chance move that chooses a card for I, (2) I’s move in which he checks or bets, and (3) 

II’s move in which she folds or calls. To each vertex of the game tree, we attach a label 

indicating which player is to move from that position. Chance moves we generally refer 

to as moves by nature and use the label N. See Figure 1. 

Each edge is labelled to identify the move. (The arrows are omitted for the sake of 

clarity. Moves are assumed to proceed down the page.) Also, the moves leading from a 

vertex at which nature moves are labelled with the probabil ities with which they occur. 

At each terminal vertex, we write the numerical value of I’s winnings (II’ s losses).  

There is only one feature lacking from the above figure. From the tree we should be 

able to reconstruct all the essential rules of the game. That is not the case with the tree of 

Figure 1 since we have not indicated that at the time II makes her decision she does not 

know which card I has received. That is, when it is II’s turn to move, she does not know 

at 
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which of her two possible positions she is. We indicate this on the diagram by 

encircling the two positions in a closed curve, and we say that these two vertices 

constitute an information set. The two vertices at which I is to move constitute two 

separate information sets since he is told the outcome of the chance move. To be 

complete, this must also be indicated on the diagram by drawing small circles about these 

vertices. We may delete one of the labels indicating II’s vertices since they belong to the 

same information set. It is really the information set that must be labeled. The completed 

game tree becomes 

 
The diagram now contains all the essential rules of the game 
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3 The Kuhn Tree. The game tree with all the payoffs, information sets, and labels for 

the edges and vertices included is known as the Kuhn Tree. We now give the formal 

definition of a Kuhn tree. 

Not every set of vertices can form an information set. In order for a player not to be 

aware of which vertex of a given information set the game has come to, each vertex in 

that information set must have the same number of edges leaving it. Furthermore, it is 

important that the edges from each vertex of an information set have the same set of 

labels. The player moving from such an information set really chooses a label. It is 

presumed that a player makes just one choice from each information set. 

Definition. A finite two-person zero-sum game in extensive form is given by 

1) a finite tree with vertices T, 

2) a payoff function that assigns a real number to each terminal vertex, 

3) a set T0 of non-terminal vertices (representing positions at which chance moves 

occur) and for each t ∈ T0, a probability distribution on the edges leading from t, 

4) a partition of the rest of the vertices (not terminal and not in T0) into two groups of 

information sets 
111 12 1,  ,  . . . ,  kT T T  (for Player I) and 

221 22 2,  ,  . . . ,  kT T T  (for Player II), and 

5) for each information set Tjk for player j, a set of labels Ljk, and for each            t ∈ 

Tjk , a one-to-one mapping of Ljk onto the set of edges leading from t. 

The information structure in a game in extensive form can be quite complex. It may 

involve lack of knowledge of the other player’s moves or of some of the chance moves. It 

may indicate a lack of knowledge of how many moves have already been made in the 

game (as is the case With Player II in Figure 3). 
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It may describe situations in which one player has forgotten a move he has made 

earlier (as is the case With Player I in Figures 3 or 4). In fact, one way to try to model the 

game of bridge as a two-person zero-sum game involves the use of this idea. In bridge, 

there are four individuals forming two teams or partnerships of two players each. The 

interests of the members of a partnership are identical, so it makes sense to describe this 

as a two-person game. But the members of one partnership make bids alternately based 

on cards that one member knows and the other does not. This may be described as a 

single player who alternately remembers and forgets the outcomes of some of the 

previous random moves. Games in which players remember all past information they 

once knew and all past moves they made are called games of perfect recall. 

A kind of degenerate situation exists when an information set contains two vertices 

which are joined by a path, as is the case with I’s information set in        Figure 5. 

 
 

We take it as a convention that a player makes one choice from each information set 

during a game. That choice is used no matter how many times the information set is 

reached. In Figure 5, if I chooses option a there is no problem. If I chooses option b, then 

in the lower of I’s two vertices the a is superfluous, and the tree is really equivalent to 

Figure 6. Instead of using the above convention, we may if we like assume in the 
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definition of a game in extensive form that no information set contains two ver tices 

joined by a path. 

 
 

Games in which both players know the rules of the game, that is, in which both players 

know the Kuhn tree, are called games of complete information. Games in which one or 

both of the players do not know some of the payoffs, or some of the probabilities of 

chance moves, or some of the information sets, or even whole branches of the tree, are 

called games with incomplete information, or pseudogames. We assume in the following 

that we are dealing with games of complete information. 

4 The Representation of a Strategic Form Game in Extensive Form. The notion of a 

game in strategic form is quite simple. It is described by a triplet (X, Y, L) as in Section 

1. The extensive form of a game on the other hand is quite complex. It is described by the 

game tree with each non-terminal vertex labeled as a chance move or as a move of one of 

the players, with all information sets specified, with probabi lity distributions given for all 

chance moves, and with a payoff attached to each terminal vertex. It would seem that the 

theory of games in extensive is much more comprehensive than the theory of games in 

strategic form. However, by taking a game in extensive form and considering only the 

strategies and average payoffs, we may reduce the game to strategic form. 

First, let us check that a game in strategic form can be put into extensive form. In the 

strategic form of a game, the players are considered to make their choices 

simultaneously, while in the extensive form of a game simultaneous moves are not 

allowed. However, simultaneous moves may be made sequentially as follows. We let one 

of the players, say Player I, move first, and then let player II move without knowing the 

outcome of I’s move. This lack of knowledge may be described by the use of an 

appropriate information set. The example below illustrates this. 
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Player I has 2 pure strategies and Player II has 3. We pretend that Player I moves first 

by choosing row 1 or row 2. Then Player II moves, not knowing the choice of Player I. 

This is indicated by the information set for Player II. Then Player II moves by choosing 

column 1, 2 or 3, and the appropriate payoff is made. 

5 Reduction of a Game in Extensive Form to Strategic Form. To go in the reverse 

direction, from the extensive form of a game to the strategic form, requires the 

consideration of pure strategies and the usual convention regarding random payoffs.  

Pure strategies. Given a game in extensive form, we first find X and Y , the sets of 

pure strategies of the players to be used in the strategic form. A pure strategy for Player I 

is a rule that tells him exactly what move to make in each of his information sets. Let 

111 1,  . . . ,  kT T  be the information sets for Player I and let 
111 1,  . . . ,  kL L  be the corresponding 

sets of labels. A pure strategy for I is a k1-tuple 
11( ,..., x )kx x=  where for each i, xi is one 

of the elements of L1i. If there are mi elements in L1i, the number of such kl-tuples and 

hence the number of I s pure strategies is the product 1 2, ,...,mkm m . The set of all such 

strategies is X. Similarly, if T21, . . . , T2k represent II’s information sets and 
221 2,. . . ,  kL L  

the corresponding sets of labels, a pure strategy for II is a k2-tuple, y = (y1, . . . , yk) where 

y ∈ L2j for each j. Player II has n1,n2, · · ·, nk pure strategies if there are nj elements in L2 j. 

Y denotes the set of these strategies. 

Random payoffs. A referee, given x ∈ X and y ∈ Y , co uld play the game, playing 

the appropriate move from x whenever the game enters one of I’s information sets, 

playing the, appropriate move from y whenever the game enters one of II’s information 

sets, and playing the moves at random with the indicated probabilities at each chance 

move. The actual outcome of the game for given x ∈ X and y ∈ Y depends on the chance 

moves selected, and is therefore a random quantity. Strictly speaking, random payoffs 

were not provided for in our definition of games in normal form. However, we are quite 

used to replacing random payoffs by their average values (expected values) when the 

randomness is due to the use of mixed strategies by the players. We adopt the same 
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convention in dealing with random payoffs when the randomness is due to the chance 

moves. The justification of this comes from utility theory  

Convention. If for fixed pure strategies of the players, x ∈ X and y ∈ Y , the payoff is a 

random quantity, we replace the payoff by the average value, and denote this average 

value by L(x, y). 

For example, if for given strategies x ∈ X and y ∈ Y , Player I wins 3 with probability 

1/4, wins 1 with probability 1/4, and loses 1 with probability 1/2, then his average payoff 

is 
1 1 1

(3) (1) ( 1) 1/ 2
4 4 2

+ + − =   so we let L(x, y) = 1/2. 

Therefore, given a game in extensive form, we say (X, Y, L) is the equivalent strategic 

form of the game if X and Y are the pure strategy spaces of players I and II respectively, 

and if L(x, y) is the average payoff for x ∈ X and y ∈ Y . 

6 Example. Let us find the equivalent strategic form to Basic Endgame in Poker 

described in the Section 5.2, whose tree is given in Figure 2. Player I has two information 

sets. In each set he must make a choice from among two options. He therefore has 2 ·2 = 

4 pure strategies. We may denote them by 

(b, b): bet with a winning card or a losing card. 

(b, c): bet with a winning card, check with a losing card.  

(c, b): check with a winning card, bet with a losing card.  

(c, c): check with a winning card or a losing card. 

Therefore, X = {(b, b), (b, c), (c, b), (c, c)}. We include in X all pure strategies 

whether good or bad (in particular, (c, b) seems a rather perverse sort of strategy.) 

Player II has only one information set. Therefore, Y = {c, f}, where  

c: if I bets, call. 

f: if I bets, fold. 

Now we find the payoff matrix. Suppose I uses (b, b) and II uses c. Then if I gets a 

winning card (which happens with probability l/4), he bets, II calls, and I wins 3 dollars. 

But if I gets a losing card (which happens with probability 3 /4), he bets, II calls, and I 

loses 3 dollars. I’s average or expected winnings is 

1 3 3
(( , ), ) (3) ( 3)

4 4 2
L b b c = + − = −

 
This gives the upper left entry in the following matrix. The other entries may be 

computed similarly and are left as exercises. 

( , ) 3 / 2 1

( , ) 0 1/ 2

( , ) 2 1

( , ) 1/ 2 1/ 2

c f

b b

b c

c b

c c

− 
 

−
 
 −
 
− −   
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Let us solve this 4 by 2 game. The third row is dominated by the first row, and the 

fourth row is dominated by the second row. In terms of the original form of the game, 

this says something you may already have suspected: that if I gets a winning card, it 

cannot be good for him to check. By betting he will win at least as much, and maybe 

more. With the bottom two rows eliminated the matrix becomes  
3 / 2 1

0 1/ 2

− 
 

− 
, whose 

solution is easily found. The value is V = -1/4. I’s optimal strategy is to mix (b, b) and (b, 

c) with probabilities 1/6 and 5/6 respectively, while II’s optimal strategy is to mix c and f 

with equal probabilities 1/2 each. The strategy (b, b) is Player I’s bluffing strategy. Its use 

entails betting with a losing hand. The strategy (b, c) is Player I’s “honest” strategy, bet 

with a winning hand and check with a losing hand. I’s optimal strategy requires some 

bluffing and some honesty. 

In Exercise 4, there are six information sets for I each with two choices.  The number 

of I’s pure strategies is therefore 26 = 64. II has 2 information sets each with two choices. 

Therefore, II has 22 = 4 pure strategies. The game matrix for the equivalent strategic form 

has dimension 64 by 4. Dominance can help reduce the dimension to a 2 by 3 game! (See 

Exercise 10(d).) 

7 Games of Perfect Information. Now that a game in extensive form has been defined, 

we may make precise the notion of a game of perfect information. 

Definition. A game of perfect information is a game in extensive form in which each 

information set of every player contains a single vertex. 

In a game of perfect information, each player when called upon to make a move knows 

the exact position in the tree. In particular, each player knows all the past moves of the 

game including the chance ones. Examples include tic-tac-toe, chess, backgammon, 

craps, etc. 

Games of perfect information have a particularly simple mathematical structure. The 

main result is that every game of perfect information when reduced to strategic form has 

a saddle point; both players have optimal pure strategies. Moreover, the saddle point can 

be found by removing dominated rows and columns. This has an interesting implication 

for the game of chess for example. Since there are no chance moves, every entry of the 

game matrix for chess must be either +1 (a win for Player I), or -1 (a win for Player II), 

or 0 (a draw). A saddle point must be one of these numbers. Thus, either Player I can 

guarantee himself a win, or Player II can guarantee himself a win, or both players can 

assure themselves at least a draw. From the game-theoretic viewpoint, chess is a very 

simple game. One needs only to write down the matrix of the game. If there is a row of 

all +1’s, Player I can win. If there is a column of all -1’s, then Player II can win. 

Otherwise, there is a row with all +1’s and 0’s and a column with all -1’s and 0’s, and so 

the game is drawn with best play. Of course, the real game of chess is so c omplicated, 
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there is virtually no hope of ever finding an optimal strategy. In fact, it is not yet 

understood how humans can play the game so well. 

8 Behavioral Strategies. For games in extensive form, it is useful to consider a 

different method of randomization for choosing among pure strategies. All a player really 

needs to do is to make one choice of an edge for each of his information sets in the game. 

A behavioral strategy is a strategy that assigns to each information set a probability 

distributions over the choices of that set. 

For example, suppose the first move of a game is the deal of one card from a deck of 

52 cards to Player I. After seeing his card, Player I either bets or passes, and then Player 

II takes some action. Player I has 52 information sets each with 2 choices of action, and 

so he has 252 pure strategies. Thus, a mixed strategy for I is a vector of 2 52 components 

adding to 1. On the other hand, a behavioral strategy for I simply given by the probability 

of betting for each card he may receive, and so is specified by only 52 numbers. 

In general, the dimension of the space of behavioral strategies is much smaller than the 

dimension of the space of mixed strategies. The question arises – Can we do as well with 

behavioral strategies as we can with mixed strategies? The answer is we can if both 

players in the game have perfect recall. The basic theorem, due to Kuhn in 1953 says that 

in finite games with perfect recall, any distribution over the payoffs achievable by mixed 

strategies is achievable by behavioral strategies as well. 

To see that behavioral strategies are not always sufficient, consider the game of 

imperfect recall of Figure 4. Upon reducing the game to strategic form, we find the 

matrix 

(f,c) 1 1

(f,d) 1 0

(g,c) 0 2

(g,d) 1 2

a b

− 
 
 
 
 
−   

 

The top and bottom rows may be removed by domination, so it is easy to see that the 

unique optimal mixed strategies for I and II are (0, 2/3, 1/3, 0) and (2/3, 1/3) respectively. 

The value is 2/3. However, Player I’s optimal strategy is not achievable by behavioral 

strategies. A behavioral strategy for I is given by two numbers, pf, the probability of 

choice f in the first information set, and pc, the probability of choice c in the second 

information set. This leads to the mixed strategy, (pfpc, pf(1 - pc), (1 - pf)pc, (1 - pf)(1 - 

pc)). The strategy (0, 2/3, 1/3, 0) is not of this form since if the first component is zero, 

that is if pfpc = 0, then either pf = 0 or pc = 0, so that either the second or third component 

must be zero also. 



European science international conference: 

 ANALYSIS OF MODERN SCIENCE AND INNOVATION 
 

 103 
 
 

If the rules of the game require players to use behavioral strategies, as is the case for 

certain models of bridge, then the game may not have a value. This means that if Player I 

is required to announce his behavioral strategy first, then he is at a distinct disadvantage. 

The game of Figure 4 is an example of this. (see Exercise 11.)  

9 Exercises. 

1. Player II chooses one of two rooms in which to hide a silver dollar. Then, Player I, 

not knowing which room contains the dollar, selects one of the rooms to search. 

However, the search is not always successful. In fact, if the dollar is in room #1 and I 

searches there, then (by a chance move) he has only probability 1 /2 of finding it, and if 

the dollar is in room #2 and I searches there, then he has only proba bility 1/3 of finding 

it. Of course, if he searches the wrong room, he certainly won’t find it. If he does find the 

coin, he keeps it; otherwise the dollar is returned to Player II. Draw the game tree.  

2. Draw the game tree for problem 1, if when I is unsuccessful in his first attempt to 

find the dollar, he is given a second chance to choose a room and search for it with the 

same probabilities of success, independent of his previous search. (Player II does not get 

to hide the dollar again.) 

3. A Statistical Game. Player I has two coins. One is fair (probability 1/2 of heads and 

1/2 of tails) and the other is biased with probability 1 /3 of heads and 2/3 of tails. Player I 

knows which coin is fair and which is biased. He selects one of the coins and tosses it.  

The outcome of the toss is announced to II. Then II must guess whether I chose the fair or 

biased coin. If II is correct there is no payoff. If II is incorrect, she loses 1. Draw the 

game tree. 

4. A Forgetful Player. A fair coin (probability 1/2 of heads and 1/2 of tails) is tossed 

and the outcome is shown to Player I. On the basis of the outcome of this toss, I decides 

whether to bet 1 or 2. Then Player II hearing the amount bet but not knowing the 

outcome of the toss, must guess whether the coin was heads or tails. Finally, player I (or, 

more realistically, his partner), remembering the amount bet and II’s guess, but not 

remembering the outcome of the toss, may double or pass. II wins if her guess is correct 

and loses if her guess is incorrect. The absolute value of the amount won is [the amount 

bet (+1 if the coin comes up heads)] (×2 if I doubled). Draw the game tree. 

5. The Kuhn Poker Model. Two players are both dealt one card at random from a deck 

of three cards {1, 2, 3}. (There are six possible equally likely outcomes of this chance 

move.) Then Player I checks or bets. If I bets, II may call or fold. If I checks, II may 

check or bet. If I checks and II bets, then I may call or fold. If both players check, the 

player with the higher card wins 1. If one player bets and the other folds, the player who 

bet wins 1. If one player bets and the other calls, the player with the higher card wins 2. 

Draw the game tree. (H. W. Kuhn, “A simplified two-person poker” Contributions to the 

Theory of Games, vol. I, pg. 97, 1950, Ed. Kuhn and Tucker, Princeton University Press.) 
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6. Generalize Basic Endgame in poker by letting the probability of receiving a winning 

card be an arbitrary number p, 0 ≤ p ≤ 1, and by letting the bet size be an arbitrary 

number b > 0. (In Figure 2, 1/4 is replaced by p and 3/4 is replaced by 1 - p. Also 3 is 

replaced by 1 + b and -3 is replaced by -(1 + b).) Find the value and optimal strategies. 

(Be careful. For p ≥ (2 + b)/(2 + 2b) there is a saddle point. When you are finished, note 

that for p < (2 + b)/(2 + 2b), Player II’s optimal strategy does not depend on p!) 

7. (a) Find the equivalent strategic form of the game with the game tree:  

 
 

(b) Solve the game. 

8. (a). Find the equivalent strategic form of the game with the game tree:  

 
 

(b). Solve the game. 

9. Coin A has probability 1/2 of heads and 1/2 of tails. Coin B has probability 1/3 of 

heads and 2/3 of tails. Player I must predict “heads” or “tails”. If he predicts heads, coin 

A is tossed. If he predicts tails, coin B is tossed. Player II is informed as to whether I’s 
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prediction was right or wrong (but she is not informed of the prediction or the co in that 

was used), and then must guess whether coin A or coin B was used. If II guesses 

correctly she wins 1 dollar from I. If II guesses incorrectly and I’s prediction was right, I 

wins 2 dollars from II. If both are wrong there is no payoff.  

(a) Draw the game tree. 

(b) Find the equivalent strategic form of the game.  

(c) Solve. 

10. Find the equivalent strategic form and solve the game of  

(a) Exercise 1.  

(b) Exercise 2.  

(c) Exercise 3.  

(d) Exercise 4. 

11. Suppose, in the game of Figure 4, that Player I is required to use behavioral 

strategies. Show that if Player I is required to announce his behavioral strategy first, he 

can only achieve a lower value of 1/2. Whereas, if Player II is required to announce her 

strategy first, Player I has a behavioral strategy reply that achieves the upper value of 2/3 

at least. 

12. (Beasley (1990), Chap. 6.) Player I draws a card at random from a full deck of 52 

cards. After looking at the card, he bets either 1 or 5 that the card he drew is a face card 

(king, queen or jack, probability 3/13). Then Player II either concedes or doubles. If she 

concedes, she pays I the amount bet (no matter what the card was). If she doubles, the 

card is shown to her, and Player I wins twice his bet if the card is a face card, and loses 

twice his bet otherwise. 

(a) Draw the game tree. (You may argue first that Player I always bets 5 with a face 

card and Player II always doubles if Player I bets 1.)  

(b) Find the equivalent normal form.  

(c) Solve. 

 

REFERENCES. 

 

1. R. Bellman (1952) On games involving bluffing, Rendiconti del Circolo Math. di 

Palermo Ser. 2, Vol. 1 139-156. 

2. R. Bellman and D. Blackwell (1949) Some two-person games involving bluffing, 

Proc. Nat. Acad. Sci. 35, 600-605. 8/04/49. 

3. Bellman and Blackwell (1950) On games involving bluffing, RAND Memo P-168, 

8/01/50. 

4. John D. Beasley (1990) The Mathematics of Games, Oxford University Press. 



European science international conference: 

 ANALYSIS OF MODERN SCIENCE AND INNOVATION 
 

 106 
 
 

5. Emile Borel (1938) Trait´ ´ e du Calcul des Probabilit´es et ses Applications 

Volume IV, Fascicule 2, Applications aux jeux des hazard, Gautier-Villars, Paris. 

6. W. H. Cutler (1975) An optimal strategy for pot-limit poker, Amer. Math. 

Monthly 82, 368-376. 

7. W. H. Cutler (1976) End-Game Poker, Preprint. 

8. Melvin Dresher (1961) Games of Strategy: Theory and Applications, Prentice 

Hall, Inc. N.J. 

9. R. J. Evans (1979) Silverman’s game on intervals, Amer. Math. Mo. 86, 277-281. 

10. T. S. Ferguson (1967) Mathematical Statistics — A Decision-Theoretic Approach, 

Academic Press, New York. 

11. J. Filar and K. Vrieze (1997) Competitive Markov Decision Processes, Springer-

Verlag, New York. 

12. L. Friedman (1971) Optimal bluffing strategies in poker, Man. Sci. 17, B764-

B771. 

13. S. Gal (1974) A discrete search game, SIAM J. Appl. Math. 27, 641-648. 

14. D. B. Gillies, J. P. Mayberry and J. von Neumann (1953) Two variants of poker, 

Contrib. Theor. Games II, 13-50. 

A. J. Goldman and J. J. Stone (1960b) A symmetric continuous poker model, J. Res. 

Nat. Bur. Standards 64B 35-40. 

15.  

 


